Let AB=r=Crank radius
BC = L = Con rod length
X = Piston motion direction
Q = Force along the con-rod
Gas force = P. A (Cylinder pressure X Piston surface area)
Since the piston is constrained to move in the X direction only.
Qcosθ−P.A=mrec.a, Where mrec = mass of reciprocating parts, We know that acceleration of the piston,
a=−ω2.r(cosθ+cos2θλ) , thus Q=P.A−mrecω2r(cosθ+cos2θλ)cosθ
Now since, AE is perpendicular to the direction of Q. Moment produced by the force Q, M = Q . AE
Also AE = r.sin(θ+Φ)
from the figure above,BD=rsinθ=LsinΦ or sinΦ=sinθλ,whereλ=Lr
We can also express sin(θ+Φ)cosθ=sinθ.cosΦ+cosθ.sinΦcosΦ=sinθ+cosθ.tanΦ
also cosΦ=1−sin2θλ2−−−−−−−√, therefore tanΦ=sinθλ1−sin2θλ2√ => tanΦ=sinθλ2−sin2θ√, since λ2>>sin2θ, hence we can neglect sin2θ,
hence tanΦ=sinθλ, therefore, sin(θ+Φ)cosθ=sinθ+cosθ.sinθλ=sinθ+sin2θλ
Finally the turning moment on the crankshaft is
TurningMoment,T.M=[P.A−mrecω2r(cosθ+cos2θλ)].r.(sinθ+sin2θλ)